GC-600 缓存型 DLT-645 转 Modbus 通讯协议抄表器 产品说明书

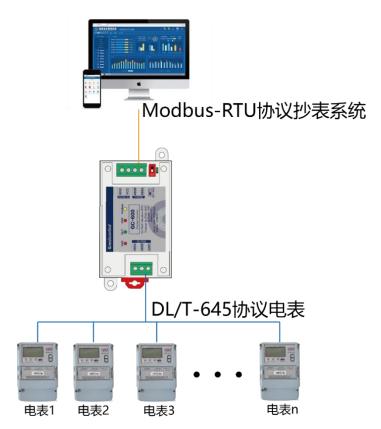
目录

一、产品概述	2
二、功能特点	2
三、规格参数	3
四、接口及功能说明	4
4.1、电源接口	5
4.2、拨码开关	
4.3、尺寸图	5
4.4、典型应用接线方法	6
五、参数配置说明	7
5.1、软件配置参数说明	g
5.2、DLT645-2007 协议采集项	10
5.3、DLT645-1997 协议采集项	11
5.4、"前导字节"使能	11
5.5、"通讯保护"功能	11
5.6、"数据类型"切换功能	
5.7、"读取模式"切换	
5.8、"数据监听"功能说明	
5.9、"透传模式"功能说明	
5.10、"导入配置"和"导出配置"	13
六、RS485 通讯布线规范及注意事项	15
6.1、RS485 总线布线规范	15
6.2、RS485 布线注意事项	15
线材选型推荐表	16
故障排除	16
重要说明	16

一、产品概述

GC-600 是 DLT645 转 modbus-RTU 的协议转换器。

模块支持 DLT645-2007 协议和 DLT645-1997 协议,通过 DLT645 接口轮询读取 电表的各项数据,然后存入模块缓存中。上位机可以用 Modbus-RTU 协议来读取 模块内的电表数据。


模块最多支持 20 个电表。

本模块有 2 种数据读取模式: "分表读取"和"集中读取"。

二、功能特点

- 电源输入 DC12-30V 具有过流和反接保护
- 支持把 DLT645 协议电表转成 Modbus-RTU 协议
- 支持 DLT645-2007 协议和 DLT645-1997 协议
- 最多可以转换 20 个电表
- 只能读取电表数据不能往电表写数据
- 有两种数据读取模式: "分表读取"和"集中读取"
- Modbus 接口支持 32 位 IEEE-754 浮点数读取
- 内置实时操作系统,稳定可靠
- 支持导轨卡扣安装和螺丝固定
- 螺钉接线端子
- 接口有静电、雷击、浪涌各种保护
- 两个 RS485 接口之间电气隔离
- 采用 32 位 MCU,波特率最高可达 19200

如上图是 GC-600 典型应用:

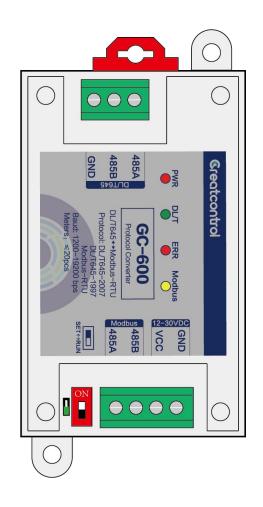
- 1.模块轮询读取电表 1 到 n,且每个表读取若干数据(采集项目可以设置)。
- 2.模块把读到的电表数据全部缓存在模块内。
- 3.外部主站可以用 Modbus-RTU 协议读取模块内的电表数据。
- 4.模块2个通讯口完全独立,可以独立并发处理数据。
- 5.模块支持 Modbus-RTU 协议 03H 功能码。

三、规格参数

项目	参数
型号名称	GC-600(DLT645 转 Modbus-RTU 协议转换器)
工作电压	DC12-30V
工作电流	≤100mA
功能概述	把多个 DL/T645 协议电表的数据转换成 Modbus-RTU 协议
协议版本	DL/T645-2007 、DL/T645-1997
电表数量	≤20 ↑
读取模式	数据有两种读取方式"分表读取"和"集中读取"
接口	2 个 RS485 接口(一个接口接电表+一个接口接 Modbus 主站)
安装	DIN35 导轨卡扣安装、螺丝固定安装
产品尺寸	100x54x32mm
产品重量	80g(净重) 100g(毛重,含配件及盒子)
使用环境	-40℃到 85℃,相对湿度 5%-95%

通讯参数

项目	参数
通信类型	隔离型 RS-485(隔离电压 2500V)
通信协议	DLT645 协议和 Modbus-RTU 协议
通信距离	1200 米
波特率	1200-19200bps,默认 9600(8, n, 1)
其他	停止位可设置,校验位可设置
保护等级	RS-485 接口每线 600W 的防雷浪涌保护, ±15KV ESD 保护


四、接口及功能说明

从站端

端子	标识	定义	描述
1	485A	接 485+	DL/T645 口接
2	485B	接 485-	电表
3	GND	公共端	一般不接

电源端

C 6/411	PIG		
端子	标识	定义	描述
1	GND	电源 0V	电源输入
2	VCC	电源 12-30V	电 <i>钢</i> 制八
3	485B	接 485-	Modbus □
4	485A	接 485+	接主站
一位	ON	拨到 ON,进 <i>)</i>	\配置模式
拨码	OFF	拨到 OFF,模	块开始运行

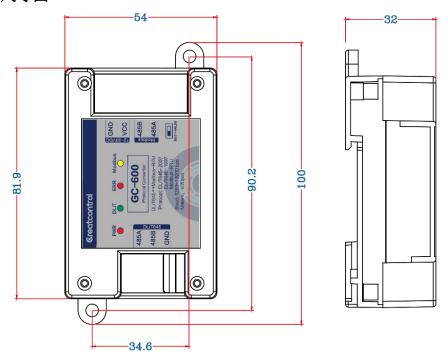
指示灯说明

标识	功能	颜色	状态及意义
PWR	电源指示灯	红	常亮:表示模块上电
DL/T	读电表指示灯	绿	闪烁:表示 DL/T645 发送读表指令
ERR	读取错误指示灯	红	闪烁:表示 DL/T645 口读取错误
Modbus	通讯指示灯	黄	闪烁:表示 Modbus 接口正在通讯

4.1、电源接口

DC12-30V 供电输入,电源电流大于等于 50mA 即可。电压不可超过 30V 否则会损坏电路。接口标注"VCC"接电源正极,标注"GND"接电源负极。电源接口有反接保护,接反不会损坏。

4.2、拨码开关

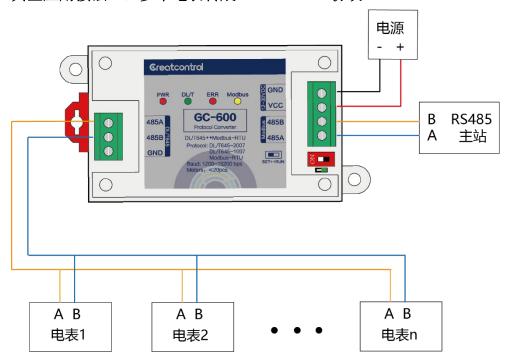

如图所示模块有一个1位拨码开关:

拨码拨到"ON",模块进入配置模式(边上绿灯会点亮)。参数配置完成后要把拨码拨到 OFF 退出配置模式。

拨码拨到"OFF",模块开始正常运行。

4.3、尺寸图

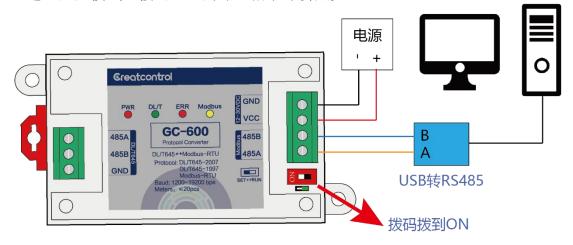
模块的长宽高: 100*54*32 (mm)


4.4、典型应用接线方法

典型应用接法一:一个电表转成 Modbus-RTU 协议

- 1. 支持 DLT645-07 协议和 DLT645-97 协议
- 2. 模块主动轮询读取电表中的各项数据
- 3. 主站可以用 Modbus-RTU 协议 03H 功能码读取模块内的电表数据

典型应用接法二: 多个电表转成 Modbus-RTU 协议


- 1. 支持 DLT645-07 协议和 DLT645-97 协议(可以两种协议电表混合接)
- 2. 模块主动轮询读取所有电表的数据
- 3. 主站可以用 Modbus-RTU 协议 03 功能码读取模块内的所有电表数据

6

4. 最多可以接 20 个电表

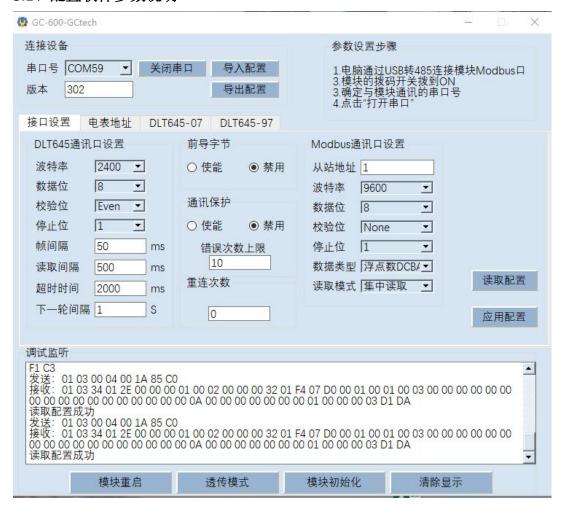
五、参数配置说明

- 1.给模块供电
- 2.用 USB 转 RS485 模块连接 GC-600 模块的 Modbus 接口。电脑会识别出 USB 转 RS485 模块的串口号(如果没有则需要安装驱动),不知道串口号可查看电脑的"设备管理器"。
- 3.拨码开关拨到"ON"的位置
- 4.进入配置模式, 拨码边上的绿色指示灯会点亮。



配置软件设置步骤:

STEP1: 设置接口通讯参数(如下图)


STEP2:添加电表地址和对应协议版本(如下图)

STEP3: 选择需要的采集项目(DLT645-07 和 DLT645-97)(如下图)

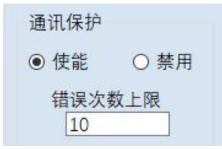
5.1、配置软件参数说明

配置软件配置项目简介			
功能块	功能	对应参数	备注
	波特率	1200-19200	可选 6 种波特率
	校验位	无校验、奇校验、偶校验	3 个参数
	停止位	1位停止位、2位停止位	2 个参数
DLT645	帧间隔	20 - 200 MS	两帧数据的最小间隔
通讯口	读取间隔	>= 100 MS	模块读取电表的间隔时间
设置	超时时间	50 – 40000 MS	读取电表的超时等待时间
火 县	下一轮间隔	0 – 20000 S	上一轮读表和下一轮读表 的间隔时间
	前导字节	选择读表指令是否添加 DLT645 协议的前导字节	4 个字节 FE FE FE FE
Modbus	从站地址	1-247	Modbus 协议设备地址

通讯口	波特率	1200-19200	6种波特率
设置	校验位	无校验、奇校验、偶校验	3 个参数
	停止位	1位停止位、2位停止位	2 个参数
	数据类型	32 位标准 IEEE-754 浮点数解析顺序选择。	4 种浮点顺序可选
	读取模式	分表读取	每个电表数据存放在固定 的寄存器地址中
	以	集中读取	寄存器地址根据设置重现 组合
	 通讯保护	使能	"使能"该功能,连续读取
	他 N(M)	禁用	某电表的错误次数超过上
通讯保护	错误次数上 限	设置数值范围 0-20	限,该电表的数据变0
	重连次数	设置数值范围 0-20	如果某条指令读电表报错, 则模块重发该指令

	配置软件按钮功能说明		
序号	按钮名称	功能说明	
1	读取配置	点击该按钮,软件从模块中读取该页面参数并显示在配置 软件上。	
2	应用配置	点击该按钮,把配置软件中设好的页面参数写入模块,且 立即生效。	
3	模块重启	点击该按钮,模块重启。	
4	模块初始化	点击该按钮,模块恢复出厂状态。	
5	透传模式	点击该按钮,模块进入透传模式	
6	清除显示	点击该按钮, "调试监听"对话框内的数据将被清除。	
7	导入配置	点击该按钮,可以选择配置文件并导入。	
8	导出配置	点击该按钮,可以把配置好的参数用 CVS 格式导出保存。	
9	插入地址	要添加电表,要先点击"插入地址"	
10	删除地址	选中输入错误的电表地址,再点击"删除地址"可以删掉错误指令。	
11	状态监听	点击该按钮,模块将监听电表的连接状态	

5.2、DLT645-2007 协议采集项

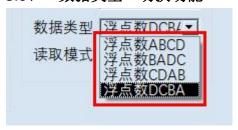

DLT645-07数据标识
□组合有功总电量 □反向有功平电量 □ B相电流 □瞬时C相视在功率 □组合有功尖电量 □反向有功谷电量 □际时总有功功率 □瞬时A相功率因素 □组合有功平电量 □组合无功2总电量 □瞬时A相有功功率 □瞬时B相功率因素 □组合有功谷电量 □第一象限无功电能 □瞬时C相有功功率 □明时C相功率因素 □正向有功总电量 □第三象限无功电能 □瞬时总无功功率 □保留 □正向有功华电量 □第三象限无功电能 □瞬时A相无功功率 □保留 □正向有功平电量 □正向视在总电能 □瞬时B相无功功率 □保留 □际有功公电量 □A相电压 □际时已相无功功率 □保留 □际有功公电量 □A相电压 □际时总视在功率 □保留 □反向有功公电量 □C相电压 □际时已相无功功率 □保留 □际时分的之电量 □区向有功公电量 □区向有功公电量 □区和电压 □际时已机在功率 □保留 □反向有功公电量 □区和电压 □际时已机在功率 □保留 □反向有功公电量 □区和电压 □际时日相视在功率 □保留 □反向有功岭电量 □A相电流 □际时日相视在功率 □保留 □反向有功岭电量 □A相电流 □际时日相视在功率 □保留
5.3、DLT645-1997 协议采集项
□正向有功总电量 □正向无功平电量 □瞬时总有功功率 □瞬时A相视在功率 □正向有功尖电量 □正向无功谷电量 □瞬时B相有功功率 □瞬时B相视在功率 □正向有功平电量 □反向无功尖电量 □瞬时C相有功功率 □保留 □正向有功谷电量 □反向无功峰电量 □瞬时A相无功功率 □保留 □反向有功总电量 □反向无功平电量 □瞬时A相无功功率 □保留 □反向有功尖电量 □反向无功平电量 □瞬时B相无功功率 □保留 □反向有功华电量 □及向无功谷电量 □瞬时B相无功功率 □保留 □反向有功平电量 □及向无功谷电量 □瞬时C相无功功率 □保留 □反向有功平电量 □和电压 □瞬时C相无功功率 □保留 □反向有功谷电量 □A相电压 □瞬时A相功率因素 □保留 □正向无功总电量 □A相电流 □瞬时B相功率因素 □保留 □正向无功岭电量 □B相电流 □瞬时C相功率因素 □保留 □正向无功岭电量 □C相电流 □瞬时已相对率因素 □保留
5.4、"前导字节"使能
前导字节
● 使能 ○ 禁用

模块默认不发送前导字节。"使能"前导字节,模块发出的电表数据采集指令将带有 4 个字节的"FE FE FE FE"。 例如

发送: FE FE FE FE 68 18 20 12 22 20 65 68 11 04 33 32 34 35 A4 16

5.5、"通讯保护"功能

网站 <u>www.greatcontroltech.com</u> 咨询热线 0571-82306300



如果要使用"**通讯保护**"功能,先选择"使能",然后填入"错误次数上限"最后点击页面中"应用配置",该功能立即生效。

如按上图所示参数设置,模块读取某个电表连续 10 次读取错误,该电表在模块内的数据将清零。

如果没有使能"**通讯保护**"功能,通信失联后该电表的数据将保持最后一次读到的数值。

5.6、"数据类型"切换功能

模块 Modbus 接口支持 32 位标准 IEEE-754 浮点数输出,可以切换四种浮点数解析顺序: "浮点数 ABCD"、"浮点数 BADC"、"浮点数 CDAB"、"浮点数 DCBA"

5.7、"读取模式"切换

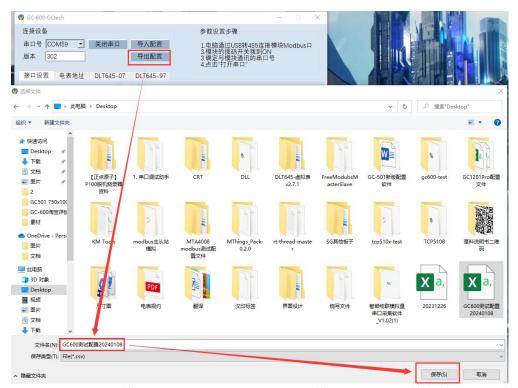
如上图模块支持两种读取模式: "分表读取" 和 "集中读取"。

- ◆ "分表读取"模式。该模式下,每个电表依次分配 110 个寄存器,且每个数据采集项的寄存器地址固定。
- ◆ "集中读取"模式。该模式下,电表数据的寄存器地址根据选择的采集项自动排列,各电表数据将被集中一起,大大减少上位机读取的次数和读取的寄存器数量。该模式下寄存器地址范围是 40001-40320,共 320 个寄存器。

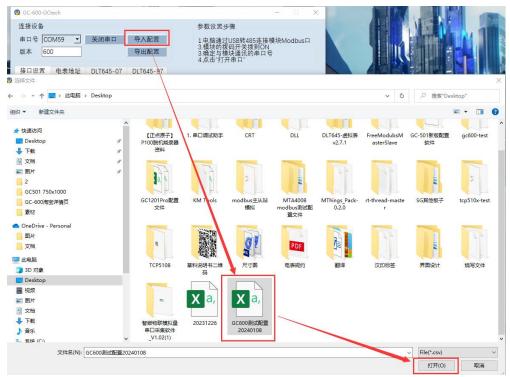
注: 详情请看《GC-600 通讯协议详解》。

5.8、"数据监听"功能说明

网站 <u>www.greatcontroltech.com</u> 咨询热线 0571-82306300


在参数配置模式下,点击上图软件中"状态监听"按钮,模块将监听每个电表的连接状态。

如上图所示,其他电表都正常连接,只有第2个电表连接错误。

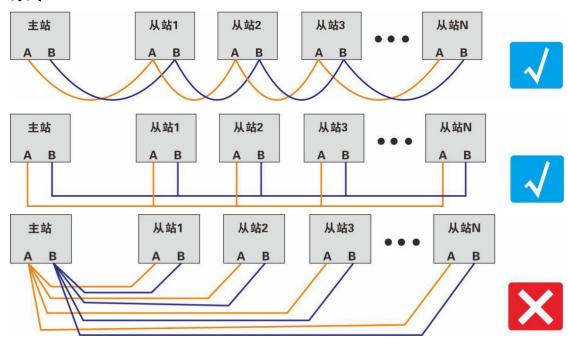

5.9、"透传模式"功能说明

在参数配置模式下,点击软件上的"透传模式"按钮,模块将进入透传模式,该模式下,模块只对波特率等接口参数进行转换,而不会对通讯指令进行改变。模块拨码拨到另外一边,模块将退出"透传模式"。

5.10、"导入配置"和"导出配置"

如上图,配置软件可以导出当前设置好的参数且用 CSV 文件保存。该文件可以个性化命名。

如上图, "导入配置"功能:点击"导入配置"选择配置文件,软件将自动把参数写入 GC-600 模块一次。

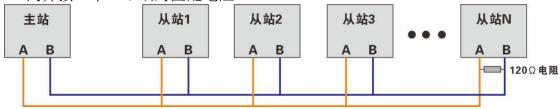


如上图,出现以上提示表示导入参数设置成功。 该功能可以大大提高批量设置参数的效率。

六、RS485 通讯布线规范及注意事项

6.1、RS485 总线布线规范

1、采用标准 RS485 总线布线方式俗称手拉手的连接方式,应尽量避免星型连接方式。



- 2、使用 2 芯屏蔽双绞线,线径粗细可参考"线材选型推荐表",总线长度不大于 1200 米,总线挂接设备不超过 250 台,分支线长度不大于 10 米。
- 3、通信线应尽量远离干扰源,通信线应走弱电井,不能与强电或射频信号线并行走线,若必须并行走线,距离不应小于 0.5 米。
- 4、同一网段上的所有设备必须具有统一的信号地,以避免共模干扰。

6.2、RS485 布线注意事项

1、485 通信标准最大通信距离 1200 米,但实际应用中到不到这个距离,且波特率越高通信距离越短,一般通信距离超过 500 米需要增加 485 信号中继器。

2、总线上挂接的设备较多时为避免信号反射,应在距离最远的一台设备通信口AB间并接一个120欧姆匹配电阻。

3、通信线的屏蔽线应与地线连接,这个地线是大地并非电源负极。

线材选型推荐表

布线距离	线材
小于 200 米	2*0.5 两芯屏蔽双绞线
200-500 米	2*0.75 两芯屏蔽双绞线
大于 500 米	2*1.0 两芯屏蔽双绞线

故障排除

故障一:模块指示灯不亮。检查电源线是否连接正确,正负极有无接反,用万用 表测量电源电压是否正确,故障排除后电路板上的红色指示灯会常亮。

故障二:无法通信。检查通信口485线是否接反,参数是否正确。

故障三: 红色指示灯和绿色指示灯一起闪烁。通讯参数设置有错误。

重要说明

公司保留在不另行通知的情况下,对产品所包含的规格进行更改、升级和优化的权利。

产品规格书版权及产品最终解释权归杭州伟控科技有限公司所有。感谢选用伟控科技产品:用心成就伟大!